Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Phytomedicine ; 116: 154858, 2023 Jul 25.
Article in English | MEDLINE | ID: covidwho-2310275

ABSTRACT

BACKGROUND: Myricetin (3,5,7-trihydroxy-2-(3,4,5-tri hydroxyphenyl)-4-benzopyrone) is a common flavonol extracted from many natural plants and Chinese herb medicines and has been demonstrated to have multiple pharmacological activities, such as anti-microbial, anti-thrombotic, neuroprotective, and anti-inflammatory effects. Previously, myricetin was reported to target Mpro and 3CL-Pro-enzymatic activity to SARS-CoV-2. However, the protective value of myricetin on SARS-Cov-2 infection through viral-entry facilitators has not yet been comprehensively understood. PURPOSE: The aim of the current study was to evaluate the pharmacological efficacy and the mechanisms of action of myricetin against SARS-CoV-2 infection both in vitro and in vivo. METHODS: The inhibitory effects of myricetin on SARS-CoV-2 infection and replication were assessed on Vero E6 cells. Molecular docking analysis and bilayer interferometry (BLI) assays, immunocytochemistry (ICC), and pseudoviruses assays were performed to evaluate the roles of myricetin in the intermolecular interaction between the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein and angiotensin-converting enzyme 2 (ACE2). The anti-inflammatory potency and mechanisms of myricetin were examined in THP1 macrophages in vitro, as well as in carrageenan-induced paw edema, delayed-type hypersensitivity (DTH) induced auricle edema, and LPS-induced acute lung injury (ALI) animal models. RESULTS: The results showed that myricetin was able to inhibit binding between the RBD of the SARS-CoV-2 S protein and ACE2 through molecular docking analysis and BLI assay, demonstrating its potential as a viral-entry facilitator blocker. Myricetin could also significantly inhibit SASR-CoV-2 infection and replication in Vero E6 cells (EC50 55.18 µM), which was further validated with pseudoviruses containing the RBD (wild-type, N501Y, N439K, Y453F) and an S1 glycoprotein mutant (S-D614G). Moreover, myricetin exhibited a marked suppressive action on the receptor-interacting serine/threonine protein kinase 1 (RIPK1)-driven inflammation and NF-kappa B signaling in THP1 macrophages. In animal model studies, myricetin notably ameliorated carrageenan-induced paw edema in rats, DTH induced auricle edema in mice, and LPS-induced ALI in mice. CONCLUSION: Our findings showed that myricetin inhibited HCoV-229E and SARS-CoV-2 replication in vitro, blocked SARS-CoV-2 virus entry facilitators and relieved inflammation through the RIPK1/NF-κB pathway, suggesting that this flavonol has the potential to be developed as a therapeutic agent against COVID-19.


Subject(s)
COVID-19 , Mice , Rats , Animals , Humans , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/chemistry , Molecular Docking Simulation , Carrageenan , Lipopolysaccharides/pharmacology , Protein Binding , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Flavonols/pharmacology
2.
Lab Med ; 2022 Jun 17.
Article in English | MEDLINE | ID: covidwho-2246690

ABSTRACT

OBJECTIVE: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid detection "re-positive" phenomenon is encountered clinically. The accuracy of a viral nucleic acid test is crucial to prevent reintroduction of the virus into the community. This study evaluated the effect of virus culturing on increasing the sensitivity and specificity of real-time polymerase chain reaction (RT-PCR) detection and viral genomic sequencing. METHODS: A series of tenfold dilutions of a SARS-CoV-2 viral stock were conducted and cultured for either 24 or 48 hours. The viral load of cultured samples was determined by RT-PCR. The cultured and non-cultured samples of 1x 50% tissue culture infectious dose (TCID50) were sequenced using metagenomic next-generation sequencing. The depth and coverage of SARS-CoV-2 genome were measured. RESULTS: The lowest viral load detectable in a sample with RT-PCR was 0.01 TCID50. After a 24-h culture, the viral ORF 1ab and N-gene cycle threshold (CT) values were reduced by 4.4 points and 1 point, respectively. One TCID50 viral load of post 24-h culture revealed the sequence depth reached an average of 752 reads, compared with 0.15 in the nonculture; furthermore, the coverage was 99.99% while 6.42% in the nonculture. CONCLUSION: These results indicate that virus culturing can significantly increase the viral load, which can increase the certainty of true-positive detection of the viral nucleic acids, and improve the quality of virus genomic sequencing.

3.
Phytomedicine ; 78: 153296, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1267880

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has extensively and rapidly spread in the world, causing an outbreak of acute infectious pneumonia. However, no specific antiviral drugs or vaccines can be used. Phillyrin (KD-1), a representative ingredient of Forsythia suspensa, possesses anti-inflammatory, anti-oxidant, and antiviral activities. However, little is known about the antiviral abilities and mechanism of KD-1 against SARS-CoV-2 and human coronavirus 229E (HCoV-229E). PURPOSE: The study was designed to investigate the antiviral and anti-inflammatory activities of KD-1 against the novel SARS-CoV-2 and HCoV-229E and its potential effect in regulating host immune response in vitro. METHODS: The antiviral activities of KD-1 against SARS-CoV-2 and HCoV-229E were assessed in Vero E6 cells using cytopathic effect and plaque-reduction assay. Proinflammatory cytokine expression levels upon infection with SARS-CoV-2 and HCoV-229E infection in Huh-7 cells were measured by real-time quantitative PCR assays. Western blot assay was used to determine the protein expression of nuclear factor kappa B (NF-κB) p65, p-NF-κB p65, IκBα, and p-IκBα in Huh-7 cells, which are the key targets of the NF-κB pathway. RESULTS: KD-1 could significantly inhibit SARS-CoV-2 and HCoV-229E replication in vitro. KD-1 could also markedly reduce the production of proinflammatory cytokines (TNF-α, IL-6, IL-1ß, MCP-1, and IP-10) at the mRNA levels. Moreover, KD-1 could significantly reduce the protein expression of p-NF-κB p65, NF-κB p65, and p-IκBα, while increasing the expression of IκBα in Huh-7 cells. CONCLUSIONS: KD-1 could significantly inhibit virus proliferation in vitro, the up-regulated expression of proinflammatory cytokines induced by SARS-CoV-2 and HCoV-229E by regulating the activity of the NF-кB signaling pathway. Our findings indicated that KD-1 protected against virus attack and can thus be used as a novel strategy for controlling the coronavirus disease 2019.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus 229E, Human/drug effects , Coronavirus Infections , Glucosides/pharmacology , NF-kappa B/metabolism , Pandemics , Pneumonia, Viral , Animals , COVID-19 , Chlorocebus aethiops , Coronavirus/drug effects , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Cytokines/metabolism , Forsythia/chemistry , Humans , Phytotherapy , Plant Extracts/pharmacology , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/virology , Signal Transduction/drug effects , Vero Cells , Virus Replication/drug effects
4.
Medicine (Baltimore) ; 100(30): e26798, 2021 Jul 30.
Article in English | MEDLINE | ID: covidwho-2191047

ABSTRACT

INTRODUCTION: Patients with coronavirus disease (COVID-19) may develop acute respiratory distress syndrome (ARDS). There have been few reports of postpartum woman with ARDS secondary to COVID-19 who required respiratory support using veno-venous extracorporeal membrane oxygenation (ECMO). We present the case of a 31-year-old woman who was admitted to hospital at 35 weeks gestation with ARDS secondary to COVID-19 and required ECMO during the postpartum period. PATIENT CONCERNS: The patient had obvious dyspnea, accompanied by chills and fever. Her dyspnea worsened and her arterial oxygen saturation decreased rapidly. DIAGNOSIS: ARDS secondary to COVID-19. INTERVENTIONS: Emergency bedside cesarean section. Medications included immunotherapy (thymosin α 1), antivirals (lopinavir/ritonavir and ribavirin), antibiotics (imipenem-cilastatin sodium and vancomycin), and methylprednisolone. Ventilatory support was provided using invasive mechanical ventilation. This was replaced by venous-venous ECMO 5 days postpartum. ECMO management focused on blood volume control, coagulation function adjustment, and airway management. OUTCOMES: The patient was successfully weaned for ECMO and the ventilator and made a good recovery. CONCLUSION: Special care, including blood volume control, coagulation function adjustment, and airway management, should be provided to postpartum patients with ARDS secondary to COVID-19 who require ECMO support.


Subject(s)
COVID-19/complications , Extracorporeal Membrane Oxygenation , Postpartum Period , Pregnancy Complications, Infectious/virology , Adult , COVID-19/therapy , Cesarean Section , Extracorporeal Membrane Oxygenation/methods , Female , Humans , Pregnancy , Pregnancy Complications, Infectious/therapy
5.
Frontiers in plant science ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2046015

ABSTRACT

Scutellariae radix (“Huang-Qin” in Chinese) is a well-known traditional herbal medicine and popular dietary supplement in the world, extensively used in prescriptions of TCMs as adjuvant treatments for coronavirus pneumonia 2019 (COVID-19) patients in China. According to the differences in its appearance, Scutellariae radix can be classified into two kinds: ZiQin (1∼3 year-old Scutellariae baicalensis with hard roots) and KuQin (more than 3 year-old S. baicalensis with withered pithy roots). In accordance with the clinical theory of TCM, KuQin is superior to ZiQin in cooling down the heat in the lung. However, the potential active ingredients and underlying mechanisms of Scutellariae radix for the treatment of COVID-19 remain largely unexplored. It is still not clear whether there is a difference in the curative effect of ZiQin and KuQin for the treatment of COVID-19. In this research, network pharmacology, LC-MS based plant metabolomics, and in vitro bioassays were integrated to explore both the potential active components and mechanism of Scutellariae radix for the treatment of COVID-19. As the results, network pharmacology combined with molecular docking analysis indicated that Scutellariae radix primarily regulates the MAPK and NF-κB signaling pathways via active components such as baicalein and scutellarin, and blocks SARS-CoV-2 spike binding to human ACE2 receptors. In vitro bioassays showed that baicalein and scutellarein exhibited more potent anti-inflammatory and anti-infectious effects than baicalin, the component with the highest content in Scutellariae radix. Moreover, baicalein inhibited SARS-CoV-2’s entry into Vero E6 cells with an IC50 value of 142.50 μM in a plaque formation assay. Taken together, baicalein was considered to be the most crucial active component of Scutellariae radix for the treatment of COVID-19 by integrative analysis. In addition, our bioassay study revealed that KuQin outperforms ZiQin in the treatment of COVID-19. Meanwhile, plant metabolomics revealed that baicalein was the compound with the most significant increase in KuQin compared to ZiQin, implying the primary reason for the superiority of KuQin over ZiQin in the treatment of COVID-19.

6.
Chin Med ; 17(1): 40, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1822198

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) causes a global pandemic and has devastating effects around the world, however, there are no specific antiviral drugs and vaccines for the constant mutation of SARS-CoV-2. PURPOSE: In this study, we evaluted the antiviral and anti-inflammatory activities of Liushen Capsules (LS) on different novel coronavirus in vitro, studied its therapeutic effects on novel SARS-CoV-2 infected mice and observed the LS's clinical efficacy and safety in COVID-19. METHODS: The antiviral and aiti-inflammatory effects of LS on the 501Y.V2/B.1.35 and G/478K.V1/ B.1.617.2 strains were determined in vitro. A hACE2 mouse model of novel SARS-CoV-2 pneumonia was established. Survival rates, histological changes, inflammatory markers, lung virus titers and the expression of the key proteins in the NF-κB/MAPK signaling pathway was detected by western blotting and immumohistochemical staining in the lungs were measured. Subsequently, the disease duration, prognosis of disease, time of negative nucleic acid and the cytokines levels in serum were used to assess the efficacy of treatment with LS in patients. RESULTS: The results showed that LS (2, 1, 0.5 µg/mL) could significantly inhibit the replication of the two SARS-CoV-2 variants and the expression of pro-inflammatory cytokines (IL-6, IL-8, IP-10, CCL-5, MIP-1α, IL-1α) induced by the virus in vitro. As for the survival experiment in mice, the survival rate of virus group was 20%, while LS-treatment groups (40, 80, 160 mg/kg) could increase the survival rate to 60, 100 and 100%, respectively. LS (40, 80, 160 mg/kg) could significantly decrease the lung titers in mice and it could improve the pathological changes, inhibit the excessive inflammatory mediators (IFN-α, IFN-γ, IP-10, MCP-1) and the protein expression of p-NF-κB p65 in mice. Moreover, LS could significantly decrease SARS-CoV-2-induced activation of p-NF-κB p65, p-IκBα, and p-p38 MAPK and increase the protein expression of the IκBα. In addition, the patient got complete relief of symptoms after being treated with LS for 6 days and was proven with negative PCR test after being treated for 23 days. Finally, treatment with LS could reduce the release of inflammatory cytokines (IL-6, PDGF-AA/BB, Eotaxin, MCP-1, MIP-1α, MIP-1ß, GRO, CCL-5, MCP-3, IP-10, IL-1α). CONCLUSION: LS effectively alleviated novel SARS-CoV-2 or variants induced pneumonia in vitro and in vivo, and improved the prognosis of COVID-19. In light of the efficacy and safety profiles, LS could be considered for the treatment of COVID-19 with a broad-spectrum antiviral and anti-inflammatory agent.

7.
Phytomedicine ; 95: 153874, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1560696

ABSTRACT

BACKGROUND: Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) pose a huge threat to human public health, no specific treatment is available. Jinzhen granule (JZ) is a traditional eight ingredients-Chinese medicine with prominent efficacy for treating viral-induced diseases. However, little is known about the antiviral effect and mechanism of JZ against SARS-CoV-2 and HCoV-229E. PURPOSE: This study aimed to reveal the antiviral effects of JZ against SARS-CoV-2 and HCoV-229E, and to further explore the underlying mechanisms regulating the host immune response. METHODS: The chromatographic separation of JZ was performed using a Shimadzu analytical high-performance liquid chromatograph with UV detection and Alltech ELSD 2000ES. We conducted cytopathic effect (CPE) and plaque reduction assays to evaluate the antiviral effect of JZ. A lethal human angiotensin converting enzyme 2 (hACE2) transgenic mouse model of SARS-CoV-2 was established to determine the protective effect of JZ on mortality and lung virus titers. Real-time quantitative PCR assays were used to analyze the expression of proinflammatory cytokines in vitro and in vivo. Western blotting was further performed to determine the activities on regulating the nuclear factor kappa B (NF-κB)/MAPK pathway. Finally, mitochondrial membrane potential assays, flow cytometry analysis and western blotting were used to assess the anti-apoptotic potency toward HCoV-229E infection. RESULTS: The results showed that 13 chemical components were identified and five peaks were determined and quantitated (gallic acid 1.97 mg/g, baicalin 20.69 mg/g, glycyrrhizic acid 4.92 mg/g, hyodeoxycholic acid 4.86 mg/g, cholic acid 4.07 mg/g). We found that JZ exerted inhibitory potency against SARS-CoV-2 and HCoV-229E in vitro by using CPE and plaque reduction assays, and it was further found that JZ protected mice infected by SARS-CoV-2 from death and inhibited lung virus titers. JZ also significantly decreased the induction of inflammatory cytokines (IL-1α, IL-6, CCL-5 and MIP-1ß), similar to the observed in vitro effect. Moreover, JZ suppressed the release of inflammatory cytokines in vitro and it decreased the protein expression of p-p38 MAPK, p-JNK, p-NF-κB p65 and p-IκBα induced by HCoV-229E and increased the expression of IκBα. Notably, JZ significantly protected HCoV-229E-infected Huh-7 cells from mitochondrial damage and decreased apoptotic cells. The activation of the mitochondria-mediated apoptotic pathway was inhibited by JZ, as shown by the reduced expression of cleaved caspase-9, caspase-3 and p-PARP. CONCLUSIONS: In conclusion, JZ (gallic acid 1.97 mg/g, baicalin 20.69 mg/g, glycyrrhizic acid 4.92 mg/g, hyodeoxycholic acid 4.86 mg/g, cholic acid 4.07 mg/g) exhibited antiviral activities against SARS-CoV-2 and HCoV-229E by regulating the NF-κB/MAPK pathway and the mitochondria-mediated apoptotic pathway. These findings demonstrated the efficacy of JZ against CoVs and suggested JZ treatment as a novel clinical therapeutic strategy for COVID-19.


Subject(s)
Antiviral Agents , Coronavirus 229E, Human , Drugs, Chinese Herbal/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacology , COVID-19 , Coronavirus 229E, Human/drug effects , Humans , MAP Kinase Signaling System , Mice , NF-kappa B
8.
Pharmacol Res ; 172: 105820, 2021 10.
Article in English | MEDLINE | ID: covidwho-1531713

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which enter the host cells through the interaction between its receptor binding domain (RBD) of spike glycoprotein with angiotensin-converting enzyme 2 (ACE2) receptor on the plasma membrane of host cell. Neutralizing antibodies and peptide binders of RBD can block viral infection, however, the concern of accessibility and affordability of viral infection inhibitors has been raised. Here, we report the identification of natural compounds as potential SARS-CoV-2 entry inhibitors using the molecular docking-based virtual screening coupled with bilayer interferometry (BLI). From a library of 1871 natural compounds, epigallocatechin gallate (EGCG), 20(R)-ginsenoside Rg3 (RRg3), 20(S)-ginsenoside Rg3 (SRg3), isobavachalcone (Ibvc), isochlorogenic A (IscA) and bakuchiol (Bkc) effectively inhibited pseudovirus entry at concentrations up to 100 µM. Among these compounds, four compounds, EGCG, Ibvc, salvianolic acid A (SalA), and isoliensinine (Isl), were effective in inhibiting SARS-CoV-2-induced cytopathic effect and plaque formation in Vero E6 cells. The EGCG was further validated with no observable animal toxicity and certain antiviral effect against SARS-CoV-2 pseudovirus mutants (D614G, N501Y, N439K & Y453F). Interestingly, EGCG, Bkc and Ibvc bind to ACE2 receptor in BLI assay, suggesting a dual binding to RBD and ACE2. Current findings shed some insight into identifications and validations of SARS-CoV-2 entry inhibitors from natural compounds.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/chemistry , Biological Products/chemistry , COVID-19 Drug Treatment , Enzyme Inhibitors/chemistry , SARS-CoV-2/enzymology , Spike Glycoprotein, Coronavirus/metabolism , Animals , Antiviral Agents/pharmacology , Binding, Competitive , Biological Products/pharmacology , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Chalcones/pharmacology , Chlorogenic Acid/analogs & derivatives , Chlorogenic Acid/pharmacology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacology , Ginsenosides/pharmacology , Humans , Interferometry , Mice, Inbred C57BL , Molecular Dynamics Simulation , Phenols/pharmacology , Protein Binding
9.
Pharmacol Res ; 158: 104850, 2020 08.
Article in English | MEDLINE | ID: covidwho-1318927

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread worldwide through person-to-person contact, causing a public health emergency of international concern. At present, there is no specific antiviral treatment recommended for SARS-CoV-2 infection. Liu Shen capsule (LS), a traditional Chinese medicine, has been proven to have a wide spectrum of pharmacological properties, such as anti-inflammatory, antiviral and immunomodulatory activities. However, little is known about the antiviral effect of LS against SARS-CoV-2. Herein, the study was designed to investigate the antiviral activity of SARS-CoV-2 and its potential effect in regulating the host's immune response. The inhibitory effect of LS against SARS-CoV-2 replication in Vero E6 cells was evaluated by using the cytopathic effect (CPE) and plaque reduction assay. The number of virions of SARS-CoV-2 was observed under transmission electron microscope after treatment with LS. Proinflammatory cytokine expression levels upon SARS-CoV-2 infection in Huh-7 cells were measured by real-time quantitative PCR assays. The results showed that LS could significantly inhibit SARS-CoV-2 replication in Vero E6 cells, and reduce the number of virus particles and it could markedly reduce pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß, IL-8, CCL-2/MCP-1 and CXCL-10/IP-10) production at the mRNA levels. Moreover, the expression of the key proteins in the NF-κB/MAPK signaling pathway was detected by western blot and it was found that LS could inhibit the expression of p-NF-κB p65, p-IκBα and p-p38 MAPK, while increasing the expression of IκBα. These findings indicate that LS could inhibit SARS-CoV-2 virus infection via downregulating the expression of inflammatory cytokines induced virus and regulating the activity of NF-κB/MAPK signaling pathway in vitro, making its promising candidate treatment for controlling COVID-19 disease.


Subject(s)
Betacoronavirus/drug effects , Complex Mixtures/pharmacology , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Signal Transduction/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19 , Cell Proliferation/drug effects , Cells, Cultured , Chlorocebus aethiops , Coronavirus Infections/virology , Humans , Inflammation Mediators/metabolism , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Virion/drug effects
10.
J Ethnopharmacol ; 279: 114367, 2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1281457

ABSTRACT

BACKGROUND: Although the rapid emergence of coronavirus disease 2019 (COVID-19) poses a considerable threat to global public health, no specific treatment is available for COVID-19. ReDuNing injection (RDN) is a traditional Chinese medicine known to exert antibacterial, antiviral, antipyretic, and anti-inflammatory effects. In addition, RDN has been recommended in the diagnosis and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated pneumonia by the National Health Council and the National Administration of Chinese Medicine. However, there is no information regarding its efficacy against COVID-19. AIM OF STUDY: This study was designed to determine the clinical efficacy of RDN in patients with COVID-19 and characterize its antiviral activity against SARS-CoV-2 in vitro. MATERIALS AND METHODS: A total of 50 adults with COVID-19 were included in this study, and the primary endpoint was recovery from clinical symptoms following 14 days of treatment. General improvements were defined as the disappearance of the major symptoms of infection including fever, fatigue, and cough. The secondary endpoints included the proportion of patients who achieved clinical symptom amelioration on days 7 and 10, time to clinical recovery, time to a negative nucleic acid test result, duration of hospitalization, and time to defervescence. Plaque reduction and cytopathic effect assays were also performed in vitro, and reverse-transcription quantitative PCR was performed to evaluate the expression of inflammatory cytokines (TNF-α, IP-10, MCP-1, IL-6, IFN-α, IFN-γ, IL-2 and CCL-5) during SARS-CoV-2 infection. RESULTS: The RDN group exhibited a shorter median time for the resolution of clinical symptoms (120 vs. 220 h, P < 0.0001), less time to a negative PCR test result (215 vs. 310 h, P = 0.0017), shorter hospitalization (14.8 vs. 18.5 days, P = 0.0002), and lower timeframe for defervescence (24.5 vs. 75 h, P = 0.0001) than the control group. In addition, time to improved imaging was also shorter in the RDN group than in the control group (6 vs.8.9 days, P = 0.0273); symptom resolution rates were higher in the RDN group than in the control group at 7 (96.30% vs. 39.13%, P < 0.0001) and 10 days (96.30% vs. 56.52%, P = 0.0008). No allergic reactions or anaphylactic responses were reported in this trial. RDN markedly inhibited SARS-CoV-2 proliferation and viral plaque formation in vitro. In addition, RDN significantly reduced inflammatory cytokine production in infected cells. CONCLUSIONS: RDN relieves clinical symptoms in patients with COVID-19 and reduces SARS-CoV-2 infection by regulating inflammatory cytokine-related disorders, suggestion that this medication might be a safe and effective treatment for COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Cytokines/analysis , Drugs, Chinese Herbal , SARS-CoV-2 , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Nucleic Acid Testing/methods , Cell Line , China/epidemiology , Cytotoxicity Tests, Immunologic/methods , Drug Monitoring/methods , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/adverse effects , Female , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Symptom Assessment/methods , Treatment Outcome
11.
Epidemiol Infect ; 149: e81, 2021 03 29.
Article in English | MEDLINE | ID: covidwho-1189172

ABSTRACT

To assess the relationship between the neutrophil-to-lymphocyte ratio (NLR) and related parameters to the severity of coronavirus disease 2019 (COVID-19) symptoms. Clinical data from 38 COVID-19 patients who were diagnosed, treated and discharged from the Qishan Hospital in Yantai over the period from January to February 2020 were analysed. NLR and procalcitonin (PCT) were determined in the first and fourth weeks after their admission, along with the clinical characteristics and laboratory test results of these patients. Based on results as obtained on the first and fourth weeks after admission, five indices consisting of NLR, white blood cells, neutrophils, lymphocytes (LY) and monocytes (MON) were selected to generate receiver operating characteristic curves, while optimal cutoff values, sensitivities and specificities were obtained according to the Yuden index. Statistically significant differences in neutrophils, LY and the NLR were present in the severe vs. moderate COVID-19 group from the first to the fourth week of their hospitalisation. The cut-off value of NLR for predicting the severity of COVID-19 was 4.425, with a sensitivity of 0.855 and a specificity of 0.979. A statistically significant positive correlation was present between PCT and NLR in the severe group as determined within the first week of admission. NLR can serve as a predictor of COVID-19 disease severity as patients' progress from the first to the fourth week of their hospitalisation. The statistically significant positive correlation between levels of NLR and PCT in severe patients indicated that increases in NLR were accompanied with gradual increases in PCT.


Subject(s)
COVID-19/virology , Lymphocytes/physiology , Neutrophils/physiology , Procalcitonin/blood , Adult , Aged , China , Female , Humans , Lymphocyte Count , Male , Middle Aged , ROC Curve , Retrospective Studies , Severity of Illness Index
12.
Acta Pharmacol Sin ; 41(9): 1178-1196, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-549299

ABSTRACT

ß-Sitosterol (24-ethyl-5-cholestene-3-ol) is a common phytosterol Chinese medical plants that has been shown to possess antioxidant and anti-inflammatory activity. In this study we investigated the effects of ß-sitosterol on influenza virus-induced inflammation and acute lung injury and the molecular mechanisms. We demonstrate that ß-sitosterol (150-450 µg/mL) dose-dependently suppresses inflammatory response through NF-κB and p38 mitogen-activated protein kinase (MAPK) signaling in influenza A virus (IAV)-infected cells, which was accompanied by decreased induction of interferons (IFNs) (including Type I and III IFN). Furthermore, we revealed that the anti-inflammatory effect of ß-sitosterol resulted from its inhibitory effect on retinoic acid-inducible gene I (RIG-I) signaling, led to decreased STAT1 signaling, thus affecting the transcriptional activity of ISGF3 (interferon-stimulated gene factor 3) complexes and resulting in abrogation of the IAV-induced proinflammatory amplification effect in IFN-sensitized cells. Moreover, ß-sitosterol treatment attenuated RIG-I-mediated apoptotic injury of alveolar epithelial cells (AEC) via downregulation of pro-apoptotic factors. In a mouse model of influenza, pre-administration of ß-sitosterol (50, 200 mg·kg-1·d-1, i.g., for 2 days) dose-dependently ameliorated IAV-mediated recruitment of pathogenic cytotoxic T cells and immune dysregulation. In addition, pre-administration of ß-sitosterol protected mice from lethal IAV infection. Our data suggest that ß-sitosterol blocks the immune response mediated by RIG-I signaling and deleterious IFN production, providing a potential benefit for the treatment of influenza.


Subject(s)
Acute Lung Injury/drug therapy , Antiviral Agents/therapeutic use , DEAD Box Protein 58/metabolism , Inflammation/drug therapy , Signal Transduction/drug effects , Sitosterols/therapeutic use , A549 Cells , Acute Lung Injury/pathology , Acute Lung Injury/virology , Animals , Antiviral Agents/analysis , Apoptosis/drug effects , Dogs , Female , HEK293 Cells , Humans , Inflammation/pathology , Inflammation/virology , Influenza A Virus, H1N1 Subtype/drug effects , Interferon Type I/metabolism , Interferons/metabolism , Lung/pathology , Madin Darby Canine Kidney Cells , Mice, Inbred BALB C , Plants/chemistry , STAT1 Transcription Factor/metabolism , Sitosterols/analysis , Interferon Lambda
SELECTION OF CITATIONS
SEARCH DETAIL